Some Ramsey-type problems about measure and category

Ashutosh Kumar

Department of Mathematics & Statistics

IIT Kanpur

Set Theory RIMS 2020

Euclidean Ramsey theory

Suppose \mathcal{F} is a family of subsets of \mathbb{R}^n and $X \subseteq \mathbb{R}^n$. We say that X avoids \mathcal{F} iff no set in \mathcal{F} is contained in X.

The chromatic number of \mathcal{F} , denoted $Chr(\mathcal{F})$, is the smallest cardinality of a partition \mathcal{P} of \mathbb{R}^n such that every member of \mathcal{P} avoids \mathcal{F} .

- ▶ (de Grey, 2018) Let $\mathcal{F} = \{\{x, y\} \subseteq \mathbb{R}^2 : ||x y|| = 1\}$. Then $5 \le \operatorname{Chr}(\mathcal{F}) \le 7$.
- ▶ (Gallai, 1939) If \mathcal{F} is the family of all similar copies of a finite subset of \mathbb{R}^n , then $\mathsf{Chr}(\mathcal{F}) \geq \omega$.
- ▶ (A. Miller, 1989) If \mathcal{F} is the family of all similar copies of an infinite subset of \mathbb{R} , then $\mathsf{Chr}(\mathcal{F}) = 2$.

Borel sets

Given a family $\mathcal F$ of subsets of $\mathbb R^n$ and $X\subseteq \mathbb R^n$ which is "large" in some sense, we can ask if there is a "large" subset $Y\subseteq X$ such that Y avoids $\mathcal F$. The following fact imposes some natural restrictions.

Exercise

Let \mathcal{F} be a family of subsets of \mathbb{R}^n such that \mathcal{F} is closed under isometries and for some $n < \omega$,

$$\inf \left\{ \textit{diam}(A) : A \in \mathcal{F}, |A| = n \right\} = 0$$

Suppose $B \subseteq \mathbb{R}^n$ is Borel and B avoids \mathcal{F} . Then B is both meager and Lebesgue null.

Similar copies

Fact

Suppose $A \subseteq \mathbb{R}^n$ is bounded and countable, $B \subseteq \mathbb{R}^n$ is Borel and no similar copy of A is contained in B. Then B is meager.

Question (Erdős, 1974)

Suppose $A \subseteq \mathbb{R}$ is countably infinite. Is there a compact $K \subseteq \mathbb{R}$ of positive measure such that no similar copy of A is contained in K?

The answer is positive if

- ▶ (Eigen and Falconer, 1985) $A = \{n^{-1} : n \ge 1\}.$
- ▶ (Bourgain, 1987) A = X + X + X for some infinite X.

Erdös' problem remains open for $A = \{2^{-n} : n \ge 1\}$.

Large sets in \mathbb{R}^n : Measure

- (1) For $X \subseteq \mathbb{R}^n$, $\mu_n^*(X)$ denotes the *n*-dimensional Lebesgue outer measure of X. X is (Lebesgue) null iff $\mu_n^*(X) = 0$. If the dimension is clear from the context, we drop the n and write μ^* .
- (2) Suppose $Y\subseteq X\subseteq \mathbb{R}^n$. We say that Y has full outer measure in X iff for every compact $K\subseteq \mathbb{R}^n$, $\mu^*(X\cap K)=\mu^*(Y\cap K)$. We say that Y has zero inner measure in X iff $X\setminus Y$ has full outer measure in X. Otherwise, Y has positive inner measure in X.

Large sets in \mathbb{R}^n : Category

Suppose $Y \subseteq X \subseteq \mathbb{R}^n$. We say that Y is everywhere nonmeager in X iff for every open $U \subseteq \mathbb{R}^n$, if $X \cap U$ is nonmeager, then $Y \cap U$ is nonmeager.

Independence results

Let

$$\mathcal{F} = \{\{a,b,c\} \subseteq \mathbb{R}^2 : a,b,c \text{ form the vertices of a right triangle}\}$$

Erdős and Komjáth (1990) showed that $\mathsf{Chr}(\mathcal{F}) = \omega$ iff CH holds.

Theorem (Komjáth, 1991)

It is consistent that there is a non-meager subset of plane each of whose non-meager subsets contains the vertices of a right triangle.

Theorem (Shelah, 2000)

It is consistent that there is a non-null subset of plane each of whose non-null subsets contains the vertices of a right triangle.

Rational distances

Let $\mathcal{F}_n=\{\{x,y\}\subseteq\mathbb{R}^n:0<||x-y||\in\mathbb{Q}\}$. Erdős and Hajnal (1969) showed that $\mathrm{Chr}(\mathcal{F}_2)=\omega$. Komjáth (1994) showed that for every n, $\mathrm{Chr}(\mathcal{F}_n)=\omega$.

Question (Komjáth, 1994)

Suppose $X \subseteq \mathbb{R}^n$. Must there exist $Y \subseteq X$ such that Y has full outer measure in X and Y avoids \mathcal{F}_n ? Must there exist an everywhere nonmeager subset $Y \subseteq X$ such that Y avoids \mathcal{F}_n ?

Note that under CH/MA, the answer is yes in all dimensions. But we think that ZFC suffices.

Theorem (Kumar, 2012)

Yes to both, if n = 1.

The proof uses a result of Gitik and Shelah which says that forcing with a σ -ideal cannot be isomorphic to the either one of Cohen and Random \times Cohen.

In plane

Theorem (Erdős-Hajnal, 1969)

There is a well-ordering (\mathbb{R}^2, \prec) such that for every $x \in \mathbb{R}^2$, $\{y : y \prec x, ||x - y|| \in \mathbb{Q}\}$ is finite.

The coloring number of a graph G = (V, E) is the least cardinal κ such that there is a well-order \prec of V such that for every $x \in V$, $|\{y: y \prec x, \{x, y\} \in E\}| < \kappa$.

Question (Komjáth, 2016)

Suppose $X \subseteq [0,1]$ and (X,E) is a graph of countable coloring number. Must there exist an E-independent $Y \subseteq X$ such that Y has full outer measure in X? Must there exist an E-independent $Y \subseteq X$ such that Y is everywhere nonmeager in X?

Some partial results

Suppose $X \subseteq [0,1]$ and (X,E) is a graph of coloring number $\kappa \leq \omega$.

- 1. If $\kappa < \omega$, then there exists an *E*-independent $Y \subseteq X$ such that Y is everywhere nonmeager in X.
- 2. If Null $\upharpoonright X$ is nowhere ω_1 -saturated, then there exists an E-independent $Y \subseteq X$ such that Y has full outer measure in X. Similarly for category.

A transversal of full outer measure

Theorem (Kumar-Shelah, 2017)

Suppose $\{X_{\alpha}: \alpha \in S\}$ is a partition of $X \subseteq [0,1]$ into countable sets. Then there exists $Y \subseteq X$ such that $\mu^*(Y) = \mu^*(X)$ and $|Y \cap X_{\alpha}| = 1$ for each $\alpha \in S$.

Lemma (Baby transversal)

Suppose $\{X_{\alpha}: \alpha \in S\}$ is a partition of $X \subseteq [0,1]$ into finite sets. Then there exists $Y \subseteq X$ such that $\mu^{\star}(Y) = \mu^{\star}(X)$ and $|Y \cap X_{\alpha}| = 1$ for each $\alpha \in S$.

Forcing

Theorem (Kumar-Shelah, 2017)

Let \mathbb{P} be a forcing. Suppose there are $\langle \mathbb{Q}_n : n \geq 1 \rangle$ and $\langle p_n : n \geq 1 \rangle$ satisfying (1)-(4) below. Then forcing with a σ -ideal cannot be isomorphic to \mathbb{P} .

- (1) For every $n \geq 1$, $p_n \in \mathbb{P}_n$ and $\mathbb{Q}_n \lessdot \mathbb{P}_{\leq p_n}$.
- (2) $\bigcup \{\mathbb{Q}_n : n \geq 1\}$ is dense in \mathbb{P} .
- (3) Each \mathbb{Q}_n is isomorphic to random forcing.
- (4) P adds a Cohen real.

Note that both Random \times Cohen and a finite support iteration of random forcing of length ω are two simple examples of such \mathbb{P} 's. Fremlin (see Section 547 in his Measure theory, Vol. 5 Part II) observed that requirement (4) can be dropped by showing that if \mathbb{P} satisfies (1)-(3), then either \mathbb{P} adds a Cohen real or there exists $p \in \mathbb{P}$ such that $\mathbb{P}_{\leq p}$ is isomorphic to Random. The latter case was ruled out by Gitik and Shelah.

ε -progress

Given $X\subseteq [0,1]$, a partition $\{X_\alpha:\alpha\in S\}$ of X where each $|X_\alpha|=\omega$ and enumerations $\{x_{\alpha,n}:n<\omega\}$ of X_α for each $\alpha\in S$, define $Y_n=\{x_{\alpha,n}:\alpha\in S\}$ and $Y_n\upharpoonright W=\{x_{\alpha,n}:\alpha\in W\}$ for $W\subseteq S$. Let (\star) be the following statement.

- (*): For every $X \subseteq [0,1]$, for every partition $\{X_{\alpha} : \alpha \in S\}$ of X into sets of size ω , for every enumeration $X_{\alpha} = \{x_{\alpha,n} : n < \omega\}$ (so we can speak of Y_n 's w.r.t. this enumeration), there is a subset W of S such that either
 - (a) Y_0 is null or
 - (b) $Y_0 \upharpoonright W$ has positive outer measure and for all $n \ge 1$, $Y_n \upharpoonright W$ has zero inner measure in Y_n .

Then (\star) implies that the transversal theorem holds.

Failure of (\star)

Assume (*) fails. Fix a witnessing $X\subseteq [0,1]$, a partition $\{X_\alpha:\alpha\in S\}$, enumerations $X_\alpha=\{x_{\alpha,n}:n\in\omega\}$ and the corresponding Y_n 's. By thinning out S, we can assume the following.

- 1. For each $n < \omega$, Y_n is non-null.
- 2. If $n < \omega$, $W \subseteq S$ and $Y_0 \upharpoonright W$ is null, then $Y_n \upharpoonright W$ has zero inner measure in Y_n .
- 3. For each $n \ge 1$, there exists $W_n \subseteq S$ such that $Y_n \upharpoonright W_n$ is null and if $W \subseteq S \setminus W_n$ is such that $Y_n \upharpoonright W$ is null, then for all $m \ge n+1$, $Y_m \upharpoonright W$ has zero inner measure in Y_m . Fix such W_n 's.

Let $\mathcal{I} = \{W \subseteq S : \mu(Y_0 \upharpoonright W) = 0\}$ and $\mathbb{P} = \mathcal{I}^+$ be the forcing with \mathcal{I} . Observe that $Z \in \mathbb{P}$ iff $(\exists^{\infty} n)(Y_n \upharpoonright Z)$ has positive inner measure in Y_n).

Failure of (*)

For each $n \ge 1$, define $B_n = \text{env}(Y_n)$ and

$$\mathbb{Q}_n = \{Z : (\exists B \subseteq B_n)(\mu(B) > 0 \text{ and } Z = \{\alpha \in S \setminus W_n : x_{\alpha,n} \in B \cap Y_n\})\}$$

Note that if $Z \in \mathbb{Q}_n$, then $Y_n \upharpoonright Z$ has positive inner measure in Y_n and hence $Y_0 \upharpoonright Z$ is non-null. So $\mathbb{Q}_n \subseteq \mathbb{P}$ for every $n \ge 1$. Let $p_n = S \setminus W_n$.

Claim

- (1) For each $n \geq 1$, $\mathbb{Q}_n \lessdot \mathbb{P}_{\leq p_n}$.
- (2) $\bigcup \{\mathbb{Q}_n : n \geq 1\}$ is dense in \mathbb{P} .
- (3) Each \mathbb{Q}_n is isomorphic to random forcing.
- (4) P adds a Cohen real.

Cohen real

Proof of (4): Construct a tree $\langle A_{\sigma} : \sigma \in {}^{<\omega}2 \rangle$ of subsets of S such that the following hold.

- (a) $A_{\langle\rangle} = S$, and for every $\sigma \in {}^{<\omega}2$
- (b) A_{σ} is a disjoint union of $A_{\sigma 0}$ and $A_{\sigma 1}$,
- (c) $0 \le k \le |\sigma| + 1 \implies \mu^*(Y_k \upharpoonright A_{\sigma 0}) = \mu^*(Y_k \upharpoonright A_{\sigma 1}) = \mu^*(Y_k \upharpoonright A_{\sigma}).$

For clause (c), we make use of baby transversal lemma. We claim that if G is \mathbb{P} -generic over V, then in V[G], the real $x=\bigcup\{\sigma\in^{<\omega}2:A_{\sigma}\in G\}$ is Cohen over V. To see this, suppose that $D\subseteq^{<\omega}2$ is dense and $x\notin\bigcup\{[\sigma]:\sigma\in D\}$. Then $S\setminus\bigcup\{A_{\sigma}:\sigma\in D\}=Z\in G$ so that $Y_0\upharpoonright Z$ is non-null. But then, for some $n\geq 1$, $Y_n\upharpoonright Z$ has positive inner measure in Y_n . So Z meets A_{σ} for every σ extending some τ , $|\tau|=n$, and hence also meets some condition in $\{A_{\sigma}:\sigma\in D\}$. A contradiction.

References

D. H. Fremlin, Measure Theory Vol. 5 Part II (Set-theoretic measure theory), https://www1.essex.ac.uk/maths/people/fremlin/mt.htm

M. Gitik and S. Shelah, Forcing with ideals and simple forcing notions, Israel J. Math. 68 (1989), 129-160

P. Komjáth, Set theoretic constructions in Euclidean spaces, New Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer 1993, 303-325

A. Kumar, On a question of Komjáth, Note of Oct. 2016, https://home.iitk.ac.in/~krashu/qk.pdf

A. Kumar and S. Shelah, A transversal of full outer measure, Adv. in Math, Vol. 321 (2017), 475-485